"‘" LightningChart®

JavaScript Charts Performance Comparison / Surface

Grid Charts
Test date November 26", 2021

Foreword

This is a performance test / comparison of JavaScript charts. The tests are focusing on
surface grid charts’ performance in different scenarios — visualizing static data sets,
refreshing datasets, and appending data sources.

The charts selected in this test, are the major manufacturers who claim their charts to be
high-performance oriented or the fastest, and some open-source libraries. There are also
other charts available, which are either end-of-life, not supported anymore, or simply don't
work. They were excluded.

We are confident we have selected all the fastest charts in the comparison, and if we didn't,
inform us to get it added in this test. The surface grid charts in these tests should cover
almost all application fields for surface grid charts.

m' LightningChart®

Test procedure

The test project is published as open-source project in GitHub.

Surface grid charts are used for visualizing of at least 3-dimensional data which exists on a
plane (usually referred to as X and Z axes). The best way to understand this scenario is
visualization of geospatial information, which has latitude (X), longitude (Z) and height (V)
values.

Additionally, surface grid charts are also used in 4-dimensional data visualization by
coloring the surface dynamically based on a 4th data dimension.

For testing performance in different types of applications, we have identified 3 different
application types of surface grid charts:

1. Static surface chart. A height map data set is loaded and rendered as surface chart.

Surface Grid 100x100 (10.0 thousand data points)

https://github.com/niiloArction/surface-chart-comparison#replicating-performance-benchmarks

2. Refreshing surface chart. In this case, the data is dynamic changing every so often
(refresh rate). Used in real-time monitoring / analysis of geospatial data.

3. Appending surface chart. Also, dynamic data, but in this case the previous data is

not cleared, instead just shifted out as new data is pushed in. Used in audio
monitoring and analysis (spectrograms), for example.

Channel 1 | 2D audio spectrogram

Channel 2 | 2D audio spectrogram

Frequency (Hz)

00:01:27 00:01:30

Frequency (Hz)

00:01:21 00:01:24

00:01:24 00:01:27 00:01:30

00:01:33
Channel 1 | 3D audio spectrogram

Channel 2 | 3D audio spectrogram

—_
3
-
o
3
a,
=
<
—
o
o
-

(a@) Apsuaiul

00:01:25 i 00:01:25
00:01:30

00:01:30~
00:01:35 0

00:01:35 0

"‘" LightningChart®

Test hardware setups
These were measured on 24112021, with an average office PC (Intel Core i7-7700K, 16 GB
RAM, AMD Radeon R9 380).

JavaScript chart performance in surface chart applications is measured by gathering
different performance metrics from a collection of surface dimensions.

Surface dimensions are specified by the number of columns and rows, for example
"T00x100" (10 000 data points).

"‘" LightningChart®

Test chart libraries (in no particular order)

e LighthingChart® JSv.3.3.0
e EChartsV522

e SciCharts JSv.2.0.2115

e PlotlyJSv242

'd" LightningChart®

Results (1/3)

Static performance comparison breakdown

In static data visualization, the most important measurable performance attribute is how
fast the chart is displayed to the user. We have a selected a single test from the set of static
performance tests that were run for each included chart library.

This test is the same for each library and it highlights the performance differences most
effectively.

Here are the results of static surface grid chart test with 2000x2000 data points.

JavaScript Chart Library Loading speed (milliseconds)
LightningChart JS 152

Hardware accelerated competitor B 1302

Competitor A with no hardware acceleration 14598

Competitor C with no hardware acceleration 30720

Static Surface Chart Speed Comparison (2000x2000 Grid)

152 ms

e LightningChart JS
e Hardware accelerated competitor B
e Competitor A

e Competitor C

1302 ms

14598 ms 30720 ms

LightningChart 1S Hardware accelerated competitor B Competitor A Competitor C
JavaScript Chart Library

"‘" LightningChart®

On average LightningChart JS was ~60x fasterthan other charts. However, direct
comparison can't be justified in this manner since LightningChart JS reaches much larger
data sets than other charts.

:ilireface grid ::c“e::::‘:: rc:eharts ::::r::;:ed charts I;Lgehet(;\ingChart
average speed speed

100x100 517 ms 331 ms 105 ms
1000x1000 4583 ms 584 ms 125 ms
2000x2000 22659 ms 1302 ms 152 ms
4000x4000 Fail 4838 ms 232 ms
6000x6000 Fail 9501 ms 374 ms
8000x8000 Fail Fail 6l4 ms
10000x10000 Fail Fail 829 ms
12000x12000 Fail Fail 1260 ms

This is a good place to explain what does the "loading speed" measurement include. You
might run into various claims of JavaScript loading speed on the internet, but we believe
that there is only one correct way to measure this.

Loading speed is the time (seconds) which user has to wait for their chart to be visible on
the web page.

'd" LightningChart®

Some inconsistencies to this statement which you might have to look out for:

Setting up rendering frameworks and licenses, or any other steps which users have
to do are included in loading time.
o For example, some manufacturers have omitted the initialization time of
graphics engines from loading time, which doesn't make any sense from
the perspective of the user and provides false results.

Loading speed includes any chart processing time between initiating the chart
creation and displaying it.
o We have also identified loading speed claims which disregarded the
processing time of chart method calls, once again producing completely
irrelevant performance measurements.

In addition to this, loading speed also includes any extra time that is required
before the chart is visible.
o MostJavaScript chartlibraries have some internal events which can be used
to track when the chart is done with processing data - this however, by no
chance means that the data is visible to the user.

"‘" LightningChart®
Results (2/3)

Refreshing performance comparison breakdown

In refreshing chart applications, performance is measured as refresh rate (how fast data
set can be refreshed, faster is better, unit is expressed as frequency Hz which means how
many refreshes per every second) and CPU usage (% of processing power used, 0-100).

In web data visualization, the CPU usage measurement is perhaps the most important
performance metric which can be measured. This is because almost exclusively all
processing on aweb page isrunin asingle process and multiple CPU cores can't be easily
utilized. In practice, this means if your web page has a single component which uses CPU
extensively it will ruin the performance of the entire web page.

If your web page has a chart component which uses 100% of CPU, you can say goodbye to
your good user experience.

We have selected a single test from the set of refreshing performance tests that were run
for each included chart library. This test is the same for each library and it highlights the
performance differences most effectively.

Here are the results of refreshing (refresh rate = 10 Hz) surface grid chart test with
2000x2000 data points.

. . CPUU
JavaScript Chart Library Actual refresh rate /s (%) sage
LightningChart JS 10.0 155
Hardware accelerated competitor B 2.2 100.0
Competitor A with no hardware) _

_ Fail Fail
acceleration
Competitor C with no hardware) ,
, Fail Fail
acceleration

m' LightningChart®

Below is a bar chart visualization of this same results table.

Surface Chart Real-Time Performance Comparison (2000x2000 Grid, 10 Hz refresh rate)

FPS: 10.0 CPU: 15.5%

® LightningChart JS

® Hardware accelerated competitor B
e Competitor A

e Competitor C

CPU: 100.0%

LightningChart JS Hardware accelerated competitor B Competitor A Competitor C

JavaScript Chart Library

On average, LightningChart JS processed data 430x fasterthan non-hardware
accelerated charts and 18.2x faster than other hardware accelerated charts.

JavaScript Chart Library Max data S.urface grid Achieved
process speed size refresh rate
LightningChart 3S 160 M/s 4000x4000 10 Hz
Hardware accelerated
) 8.8 M/s 2000x2000 22 Hz

competitor B
Competitor A with no hardware

. 600 k/s 500x500 10 Hz
acceleration
Competitor C with no hardware

_ 148 k/s 200x200 37 Hz
acceleration

m' LightningChart®
Results (3/3)

Appending performance comparison breakdown

We have a selected a single test from the set of appending performance tests that were
run for each included chart library. This test is the same for each library and it highlights
the performance differences most effectively.

Here are the results of appending surface grid chart test with sample size 500, samples
added per second 200 and sample history 10 seconds.

JavaScript Chart Library Refresh rate (FPS) CPU Usage (%)
LightningChart 3S 60.0 7.5

Hardware accelerated competitor B 58 100.0
Competitor A with no hardware acceleration 0.7 100.0
Competitor C with no hardware acceleration Fail Fail

Below is a bar chart visualization of this same results table.

Appending Surface Chart Performance Comparison (sample size = 500, stream rate 200 Hz)

FPS: 60.0 CPU: 7.5%

e LightningChart JS

® Hardware accelerated competitor B
e Competitor A

e Competitor C

FPS: 5.8

— CPU: 100.0% FPS: 0.7 CPU: 100.0%

LightningChart JS Hardware accelerated competitor B Competitor A Competitor C
JavaScript Chart Library

"‘" LightningChart®

On average, LightningChart JS could manage appending applications with T000x more
data than non-hardware accelerated charts and 20x more data than other hardware
accelerated charts, while requiring significantly less CPU power.

Heaviest test Incoming data CPU
JavaScript chart library while keeping FPS points per usage
>10 second (%)

Sample size: 1000,

LightningChart JS Stream rate: 200 200 000 53%
Hz

Hardware accelerated Sample size: 100,

. 10 000 100.0%
competitor B Stream rate: 100 Hz
Competitor A with no Sample size: 100,

. 1000 79.0%
hardware acceleration Stream rate: 10 Hz
Competitor C with no Sample size: 100,
1000 100.0%

hardware acceleration Stream rate: 10 Hz

"‘" LightningChart®

Additional Test

We performed a separate test iteration with a more powerful PC (Ryzen 9 5900X, 64GB
RAM, RTX 3080) to see what the maximum capability of LightningChart JS Surface charts
is. Here are the results:

Static surface chart

e Maximum data set size: 2 BILLION data points (45000x45000)

e Massive 10000x10000 surface grid can be loaded in less than a second! (768 ms)
o Thistranslates to processing ~130 million data points in 1second.

m' LightningChart®

Refreshing surface chart

e LightningChart JS officially enables
visualization. From the performance results of older data visualization tools, it can
be seen that they are simply not efficient enough with CPU usage to allow this kind
of applications. Here is one performance test result we'd like to highlight:

real-time

refreshing surface data

Js

Total
JavaScript Refresh Surface grid daFa Achieved CPU
chart library rate (Hz) | dimensions points refresh usage
per rate (FPS) (%)
refresh
LightningChart o
60 1000x1000 1 million 60.0 16.0%

In this test, a surface data set is refreshed 60 times per second. This is the most common
maximum refresh rate of computer monitors, thus a very commonly used refresh rate in
monitoring solutions.

Note, the CPU usage from LightningChart JS:16.0 %. This leaves plenty of power for the
rest of the web page as well as something often forgotten before it is a problem:
transferring the data to the data visualization application, as well as possible data analysis
computations.

'd" LightningChart®

Appending surface chart

e LightningChart JS officially enables real-time appending surface data
visualization. From the performance results of older data visualization tools, it can
be seen that they are simply not efficient enough with CPU usage to allow this kind
of applications.

Why is this?

Most importantly, this is due to design decisions. All other chart solutions that we tested
only allowed following actions:

e Create surface chart with X data set.

e Update existing surface chart with X data set.

However, this is not applicable to appending surface charts because of several reasons:
1. User isresponsible for appending data and shifting old data out.

o This means that actually users are implementing a significant part of the
data processing.

2. Data update is not optimized.

o Evenifonly one sample is added to the surface, it results in the entire chart
being updated as if the whole data set was changed.

o Thiswill NEVER perform on an acceptable level in real-time applications.

"‘" LightningChart®

How does LightningChart resolve this issue?

From the start, LightningChart JS was designed to work in all real-time applications. For
this reason, we have a dedicated surface chart feature, which handles all the above-
mentioned processes internally, while user only has to push in new samples to append.

..and here is how it performs with a fast machine:

JavaScript chart Surface grid Ne.w data Achieved CPU

librar dimensions points per refresh rate usage
y second (FPS) (%)

LightningChart

78 2000x1000 200 thousand 550 2.5%

This is an extremely heavy application, with each sample having 2000 data values and
displaying time domain history from 10 seconds with 100 new samples added per second.

In practice, this should cover any realistic need for 3D spectrogram data visualization
applications, which are usually limited by sample size and refresh rate.

"‘" LightningChart®

Conclusion - Which is the fastest JavaScript chart?

Different chart charting libraries have their own strengths and selling points, but
LightningChart's strength definitely is the exceptional rendering performance, allowing to
build very advanced and data-intensive applications, visualizing heat map charts in just
about any type of application.

After performing these intensive tests on three types of JS surface grid charts, it was
demonstrated that LightningChart is the fastest hardware-accelerate charting library as
is able to:

e keepalow CPU usage during all tests at any extremely large datasets.
e maintain the highest refresh rate.
e boost its performance level, even more, when carrying out the tests on a high-

end device.

Remarkable observations:

On a mid-level device,

e LightningChart JS static surface charts are 60x faster than other libraries

e On average, LightningChart JS refreshing surface charts are 430x faster than
non-hardware accelerated libraries and 18.2x faster than hardware-accelerated
libraries.

e Forappending surface charts, LightningChart JS can manage, on
average, 1000x more data than non-hardware accelerated charts whereas it

can handle 20x more data than hardware-accelerated charts.

On a high-level device,

e LightningChart JS static surface charts can visualize 2 billion data
points and load 130 million data points in only 768 milliseconds!

e Forrefreshing surface charts, LightningChart JS can handle 1 million data
points per refresh at 60 FPS and only 16% CPU usage.

e Appending surface charts support dimensions of 2 million data points at 55
FPS and only 2.5% CPU is required.

'd" LightningChart®

About LightningChart® JS

LightningChart® is registered trademark by Arction Ltd, a pioneer in high-performance
charting, who introduced the fastest, GPU accelerated charts, already in 2009 for Microsoft
NET technologies. Before that, and ever since, the LightningChart® team has studied
different technologies, prototyped, researched, Ultimate Data Visualization Solutions
innovated new algorithms, which are now part of LightningChart® product lines, to
produce the absolute best performance for those advanced applications that really need
it. LightningChart® JS product line was released in 2019 and development is full-time by a
large team. LightningChart® team is ready to help!

