LightningChart JS Migration Guide

From version 3.x to version 4.0.0.

dispose and restore

Axis.setInterval

Axis.stop and Axis.release
Axis.onScaleChange
ChartXY.addHeatmapSeries
Chart3D.addSurfaceSeries

Highlight styles

Themes

setTitleMarginBottom, setTitleMarginTop
setMouseInteractions

onHover, offHover

onHighlight

Axis.getHeight

Dashboard.mapCharts and Dashboard.forEachCharts
LegendBoxOptions.disposeOnClick
solveNearestFromSegment
disableAnimations

setMaxPointCount
setDataCleaningThreshold
setMouseInteractionsWhileScrolling
setMouseInteractionsWhileZooming
LineStyle.thickness

setStrokeStyle methods

setLineStyle, getLineStyle
Axis.setTickStyle
ZoomBandChart.attachedAxis
HeatmapGridSeries.setPixelInterpolationMode

b

LightningChart®

onAxisAreaMouseDragStart, onAxisAreaMouseDrag, onAxisAreaMouseDragStop, onAxisInteractionAreaMouseTouchStart,

onAxisInteractionAreaMouseTouch, onAxisInteractionAreaMouseTouchStop, offAxisInteractionAreaMouseTouchStart,
offAxisInteractionAreaMouseTouchStart, offAxisInteractionAreaMouseTouch, offAxisInteractionAreaMouseTouchStop

Minimum TypeScript version
e ChartXY default AutoCursor behavior
e UILegendBox type removed

dispose and restore ChangeS

All restore() methods have been removed.

dispose() now permanently destroys the component. This action is no longer reversable.

To temporarily hide components, use setVisible(false)

Axis.setInterval

Wrapped parameters of Axis.setInterval method in an object.

Also, optional parameter stopAxisAfter default value was changed from false to true.

Migration examples:

Axis.setInterval(start, end) -> Axis.setInterval({ start, end, stopAxisAfter: true })

Axis.setInterval(start, end, false) -> Axis.setInterval({ start, end, animate: false, stopAxisAfter: true })

Axis.setInterval(start, end, false, true) -> Axis.setInterval({ start, end, animate: false, stopAxisAfter: true })

Special note for use of Axis.setInterval with progressive scrolling axis; previously this involved code like:

// Specify visible axis interval and enable progressive scrolling

Axis.setInterval(@, 1000).setScrollStrategy(AxisScrollStrategies.progressive)

After v4.0.0, setInterval stops axis from scrolling by default. So, in order to get the expected behavior, stopAxisAfter: false has to be added:

// Specify visible axis interval and enable progressive scrolling

Axis.setInterval({ start: @0, end: 1000, stopAxisAfter: false }).setScrollStrategy(AxisScrollStrategies.progressive)

Axis.stop and Axis.release ChangeS

Both Axis.stop and Axis.release methods have been renamed. Usage of stop should be replaced with Axis.setStopped(true) and release with

Axis.setStopped(false)
Axis.onScaleChange

Renamed to Axis.onIntervalChange.

Breaking change in number of parameters. Previously used like:
Axis.onScaleChange((start, end) => ...)

Now should be changed to:

Axis.onIntervalChange((axis, start, end) => ...)
ChartXY.addHeatmapSeries

0ld poorly performing ChartXY.addHeatmapSeries API has been removed. To create Heatmap Grid series use ChartXY.addHeatmapGridSeries or
ChartXY.addHeatmapScrollingGridSeries instead.

Heatmap Mesh series functionality (IntensitySeriesTypes.Mesh) has been removed completely. We have plans to reintroduce this at a later point. If you require
this functionality, please contact us (support@lightningchart.com) and let us know your use case.

Chart3D.addSurfaceSeries

0ld poorly performing Chart3D.addSurfaceSeries API has been removed. To create Surface Grid series use Chart3D.addSurfaceGridSeries or
Chart3D.addSurfaceScrollingGridSeries instead.

3D Mesh series functionality has been removed completely. We have plans to reintroduce this at a later point. If you require this functionality, please contact us
(support@lightningchart.com) and let us know your use case.

Highlight styles

All styles that are specific only to components when they are highlighted have been removed.

After v4.0.0 all highlighted components are automatically highlighted according to the used theme - in dark themes, color is brightened, whereas in light themes, color
is darkened.

If you need to apply different style for hovered or highlighted component, then you can utilize methods like onMouseEnter and onHighlight :

// Change line series style when mouse is over it.
lineSeries.onMouseEnter(() => {
lineSeries.setStrokeStyle(new SolidLine({ thickness: 2, fillStyle: new SolidFill({ color: ColorRGBA(255, @, @) }) }))
b))
lineSeries.onMouseLeave(() => {

lineSeries.setStrokeStyle(new SolidLine({ thickness: 2, fillStyle: new SolidFill({ color: ColorRGBA(®, 255, @) }) }))
1

Themes

After v4.0.0, the following built-in Themes are available:

darkGold (default)
light
lightNature
cyberSpace
turquoiseHexagon

Themes that utilize file resources

cyberSpace and turquoiseHexagon utilize file assets included along-side the library. In order to use these, you need to setup resources hosting (see
resourcesBaseUrl docs).

Custom themes

Removed built-in custom color theme utilities: customTheme, customSimpleTheme, customComplexTheme
The Theme interface has been completely rewritten in v4.0.0. The intention with Theme rewrite is to:

1. replace ambiguous properties (not sure what it affects, or affects many things) with non-ambiguous ones (name clearly describes what it should do)
2. make Theme properties as flexible as possible. For example, separate properties for X and Y axis styles rather than having one property for all types of axes.

Unfortunately, this results in very hard migration from previous Theme usages and a significantly increased number of properties.

Starting with v4.0.0 the topic of custom color themes is moving to a separate open-source repository @arction/Icjs-themes. At this time, the repository is very small

and only includes a minimal example of making a custom color theme in v4.0.0. Going forward, both LCJS users and developers can extend this repository with the
intention of making custom color themes easier for us both.
For latest information of custom color themes, refer to FAQ in API documentation and read section "How to use Custom Color Themes?".

setTitleMarginBottom, setTitleMarginTop

These methods and relative getters have been removed. Their usage is replaced with setTitleMargin, which accepts an object that can have properties for left,
right, top and bottom. The behavior is unchanged.

// Before
chart.setTitleMarginBottom(40)

// After
chart.setTitleMargin({ bottom: 40 })

setMouseInteractions
Before v4.0.0, having mouse interactions on could have negative impacts on performance, so often the official instruction was to disable them unless required.
Furthermore, many components had them disabled by default and some components even didn't support them.

Starting with v4.0.0, all mouse interactions are enabled by default. The performance of having mouse interactions enabled is not a real concern anymore, regardless of
the component in question, even massive line series, etc.

One side effect you might see from this is after migration is that series may start highlighting on mouse hover. To disable highlighting on hover use
setHighlightOnHover(false)

onHover, offHover

These methods has been removed, their use cases can be replaced by using methods: onMouseEnter, onMouseLeave and solveNearestFromScreen.

If you copied their usage from a Interactive Example, please refer to the updated code of that example to learn how to use the alternate methods for the same use
case.

onHighlight
onHighlight method was previously defined as:
onHighlight(handler: (isHighlighted: boolean) => void): Token
In v.4.0.0, the callback parameter changes from boolean to boolean | number .

onHighlight(handler: (isHighlighted: boolean | number) => void): Token

Axis.getHeight

No replacement exists currently.

To force exact pixel alignment of an Axis, configure it using Axis.setThickness.

Dashboard.mapCharts and Dashboard.forEachCharts

Use Dashboard.getCells() and filter for Chart instances or the instance type you want to interact with.
const cells = dashboard.getCells()
cells.forEach((cell) => {

if (cell.panel instanceof Chart3D) {
cell.panel.setBoundingBox({ x: 2, y: 1, z: 1 })

b))

LegendBoxOptions.disposeOnClick

The LegendBoxAddOptions.disposeOnClick property has been changed to toggleVisibilityOnClick .

Functionality is also changed to use setVisible internally, rather than dispose.

solveNearestFromSegment
This method has been removed, use solveNearestFromScreen instead.
disableAnimations

All disableAnimations methods have been removed. It has been replaced with setAnimationsEnabled(false) .

setMaxPointCount

All setMaxPointCount methods have been removed. All previous usage should migrate to using setDataCleaning method.

Previous usage of setMaxPointCount :
series.setMaxPointCount(1000);

Usage in 4.0:

series.setDataCleaning({
minDataPointCount: 1000,

s

Be extra careful with above migration, since some series types support specifying maxDataPointCount but this behaves differently from previous
setMaxPointCount configuration.

OHLCSeries previously behaved in a different manner to other series with regards to setMaxPointCount configuration. To replicate exact same behavior as
before, maxDataPointCount configuration should be supplied:

Previous usage of OHLCSeries.setMaxPointCount :
ohlcSeries.setMaxPointCount(1000);

Usage in 4.0:
ohlcSeries.setDataCleaning({

maxDataPointCount: 1000,
s

setDataCleaningThreshold

All setDataCleaningThreshold methods have been removed. All previous usage should migrate to using setDataCleaning method.

Previous usage of setDataCleaningThreshold:
series.setDataCleaningThreshold(1000);

Usage in 4.0:

series.setDataCleaning({ progressiveDataCleaningThreshold: 1000 });

setMouseInteractionsWhileScrolling

This method has been removed. If you were using this method before upgrading to v.4.x, you should use setAutoCursorEnabledDuringAxisAnimation method
instead.

setMouseInteractionswWhileZooming

This method has been removed. If you were using this method before upgrading to v.4.x, you should use setAutoCursorEnabledDuringAxisAnimation method
instead.

LineStyle.thickness

LineStyle.thickness property has been removed. Please use LineStyle.getThickness() instead.

Type change in many setstrokestyie Methods

In previous library versions, many setStrokeStyle (or equivalent) methods only accepted SolidLine as argument. For the most part, this only meant that you
could not supply emptyLine in TypeScript applications.

After v4.0.0, these methods now accept LineStyle . This is a more abstract type than SolidLine, which means that emptyLine can also be used. This should not
affect any /oosely typed usages because LineStyle has all same methods as SolidLine (setThickness, setFillStyle).

// Example of loosely typed use of setStrokeStyle
// This is 0K
lineSeries.setStrokeStyle((stroke) => stroke.setThickness(1))

However, it is possible that if you explicitly defined the expected type of the callback, then you may get type issues after migrating to v4.0.0:

// Example of explicitly defining expected callback type
lineSeries.setStrokeStyle((stroke: SolidLine) => stroke.setThickness(1))

// You might get type errors above, so you should remove the type definition, like so:

lineSeries.setStrokeStyle((stroke) => stroke.setThickness(1))

All APIs affected by this:

SpiderChart.setAxisStyle
SpiderChart.getAxisStyle
SpiderChart.setNibStyle
SpiderChart.getNibStyle
ConstantLine.setStrokeStyle
ConstantLine.getStrokeStyle
ConstantLine.setStrokeStyleHighlight
AreaSeriesBipolar.setPositiveStrokeStyle
AreaSeriesBipolar.setPositiveStrokeStyleHighlight
AreaSeriesBipolar.setNegativeStrokeStyle
AreaSeriesBipolar.setNegativeStrokeStyleHighlight
AreaSeriesMonopolar.setStrokeStyleHighlight
AreaRangeSeries.setHighStrokeStyle
AreaRangeSeries.setLowStrokeStyle
AreaRangeSeries.setHighStrokeStyleHighlight
AreaRangeSeries.setLowStrokeStyleHighlight
LineSeries.setStrokeStyle
LineSeries.getStrokeStyle
LineSeries.setStrokeStyleHighlight
LineSeries.setStrokeStyleHighlight
PointLineSeries.setStrokeStyle
PointLineSeries.getStrokeStyle
PointLineSeries.setStrokeStyleHighlight
PointLineSeries.setStrokeStyleHighlight

setLineStyle, getlLineStyle

All occurences of these methods have been renamed as below:

e setlLineStyle -> setStrokeStyle

® getlineStyle -> getStrokeStyle

Axis.setTickStyle

Method removed, use Axis.setTickStrategy to style ticks.

ZoomBandChart.attachedAxis

Changed from attachedAxis: Axis to attachedAxes: Axis[] .

HeatmapGridSeries.setPixelInterpolationMode

Renamed to setIntensityInterpolation.

onAxisAreaMouseDragStart, onAxisAreaMouseDrag, onAxisAreaMouseDragStop, onAxisInteractionAreaMouseTouchStart,

onAxisInteractionAreaMouseTouch, onAxisInteractionAreaMouseTouchStop, offAxisInteractionAreaMouseTouchStart,

offAxisInteractionAreaMouseTouchStart, offAxisInteractionAreaMouseTouch, offAxisInteractionAreaMouseTouchStop

These methods were not named correctly, and have now been renamed like below:

onAxisAreaMouseDragStart -> onAxisInteractionAreaMouseDragStart
onAxisAreaMouseDrag -> onAxisInteractionAreaMouseDrag
onAxisAreaMouseDragStop -> onAxisInteractionAreaMouseDragStop
onAxisInteractionAreaMouseTouchStart -> onAxisInteractionAreaTouchStart
onAxisInteractionAreaMouseTouch -> onAxisInteractionAreaTouch
onAxisInteractionAreaMouseTouchStop -> onAxisInteractionAreaTouchStop
offAxisInteractionAreaMouseTouchStart -> offAxisInteractionAreaTouchStart
offAxisInteractionAreaMouseTouch -> offAxisInteractionAreaTouch
offAxisInteractionAreaMouseTouchStop -> offAxisInteractionAreaTouchStop

TypeScript support
Minimum TypeScript version support bumped from 2.8 to 4.1.

ChartXY default AutoCursor behavior

The default AutoCursor behavior in ChartXY has been changed.
Now the AutoCursor is enabled during Axis animations (when the Axis interval change is animated, i.e. during zooming) by default.

To restore previous behavior, use the new ChartXY.setAutoCursorEnabledDuringAxisAnimation method.
UILegendBox

This type has been removed and replaced with LegendBox

m LightningChart®

